Big brain genes have been selected for (maybe)

Microcephalin, a Gene Regulating Brain Size, Continues to Evolve Adaptively in Humans — Evans et al. 309 (5741): 1717 — Science

Although the finding itself isn’t terribly shocking, the analysis is interesting and raises some even more interesting ethical questions. Methodology: The researchers tracked the occurence of a particular haplotype, which “increased in frequency too rapidly to be compatible with neutral drift [and] this indicates that it has spread under strong positive selection.” Strikingly this gene is not very old (37,000 years) and it has been changing rapidly… the real message: make no mistake, we’re still evolving!

Another interesting issue involves this figure from the paper:
Map of haplotype distribution for increased brain size

Fig. 3. Global frequencies of Microcephalin haplogroup D chromosomes (defined as having the derived C allele at the G37995C diagnostic SNP) in a panel of 1184 individuals. For each population, the country of origin, number of individuals sampled, and frequency of haplogroup D chromosomes are given (in parentheses) as follows: 1, Southeastern and Southwestern Bantu (South Africa, 8, 31.3%); 2, San (Namibia, 7, 7.1%); 3, Mbuti Pygmy (Democratic Republic of Congo, 15, 3.3%); 4, Masai (Tanzania, 27, 29.6%); 5, Sandawe (Tanzania, 32, 39.1%); 6, Burunge (Tanzania, 28, 30.4%); 7, Turu (Tanzania, 23, 15.2%); 8, Northeastern Bantu (Kenya, 12, 25%); 9, Biaka Pygmy (Central African Republic, 32, 26.6%); 10, Zime (Cameroon, 23, 8.7%); 11, Bakola Pygmy (Cameroon, 24, 10.4%); 12, Bamoun (Cameroon, 28, 17.9%); 13, Yoruba (Nigeria, 25, 24%); 14, Mandenka (Senegal, 24, 16.7%); 15, Mozabite [Algeria (Mzab region), 29, 53.5%]; 16, Druze [Israel (Carmel region), 44, 60.2%]; 17, Palestinian [Israel (Central), 40, 63.8%]; 18, Bedouin [Israel (Negev region), 44, 54.6%]; 19, Hazara (Pakistan, 20, 85%); 20, Balochi (Pakistan, 23, 78.3%); 21, Pathan (Pakistan, 23, 76.1%); 22, Burusho (Pakistan, 25, 66%); 23, Makrani (Pakistan, 24, 62.5%); 24, Brahui (Pakistan, 25, 78%); 25, Kalash (Pakistan, 24, 62.5%); 26, Sindhi (Pakistan, 25, 78%); 27, Hezhen (China, 9, 77.8%); 28, Mongola (China, 10, 100%); 29, Daur (China, 10, 85%); 30, Orogen (China, 10, 100%); 31, Miaozu (China, 9, 77.8%); 32, Yizu (China, 10, 85%); 33, Tujia (China, 10, 75%); 34, Han (China, 41, 82.9%); 35, Xibo (China, 9, 83.3%); 36, Uygur (China, 10, 90%); 37, Dai (China, 9, 55.6%); 38, Lahu (China, 10, 85%); 39, She (China, 9, 88.9%); 40, Naxi (China, 10, 95%); 41, Tu (China, 10, 75%); 42, Cambodian (Cambodia, 11, 72.7%); 43, Japanese (Japan, 27, 77.8%); 44, Yakut [Russia (Siberia region), 25, 98%]; 45, Papuan (New Guinea, 17, 91.2%); 46, NAN Melanesian (Bougainville, 18, 72.2%); 47, French Basque (France, 24, 83.3%); 48, French (France, 28, 78.6%); 49, Sardinian (Italy, 26, 90.4%); 50, North Italian [Italy (Bergamo region), 13, 76.9%]; 51, Tuscan (Italy, 8, 87.5%); 52, Orcadian (Orkney Islands, 16, 81.3%); 53, Russian (Russia, 24, 79.2%); 54, Adygei [Russia (Caucasus region), 15, 63.3%]; 55, Karitiana (Brazil, 21, 100%); 56, Surui (Brazil, 20, 100%); 57, Colombian (Colombia, 11, 100%); 58, Pima (Mexico, 25, 92%); 59, Maya (Mexico, 25, 92%).

Haplogroup D describes a set of mutations in the gene encephalin that, according to the study, have been selected for. The figure/caption above shows that this haplotype occurs at a much lower rate in sub-Saharan populations and highest in East Asian, European, and Latin American populations. Let me be clear: The paper is intended to demonstrate the selective pressure for this haplogroup. Although the authors suggest it, this does not necessarily give us the causal connection that encephalin was selected for because the gene results in a bigger brain.

It is known that encephalin definitely plays a role in determing brain size, but, as this well done NYT article (highly recommended for those unable to access the original Science article) points out, there could be another function of the gene product (perhaps even some non-neural role) that explains the selection.

I do feel strongly that this kind of science is interesting and needs to be done, both for improving our understanding of the world and for public health benefits, but it will be only more controversial as we find more genes and evolutionary scenarios like this. One very nice side-effect I think is that these new levels of individual genotyping precision will really challenge what we think of as race. Once we discover everyone is a genetic mutt, can anyone really be said to belong to one race? .

Advertisements

One thought on “Big brain genes have been selected for (maybe)

  1. Pingback: neurodudes » Blog Archive » Lack of selection in ASPM gene haplotype

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s