Neuroengineering mosquito repellents

There has been a few articles recently in the NYT about the neural mechanisms used by mosquito repellents. What a wonderful idea: Do some ephys recordings to find which neurons are sensitive to DEET (the current standard for mosquito repellents, which I can attest both doesn’t work very well and eats holes in synthetic clothing) and then build targeted compounds for those receptors/neurons/pathways. I always like this type of simple and practical neuroengineering.

Right now, it appears that there’s a bit of controversy in the field. Earlier this year, in Science, a group from Rockefeller found that DEET masked sensitivity to human odors by interfering with a particular odorant receptor. This impressive result was recently question by entomologists from UC-Davis in a PNAS paper claiming that DEET acts directly on a particular olfactory receptor neuron and does not attenuate the response to the same human-emitted odorant, as found in the earlier paper. Although the results appear to be conflicting, the studies use different techniques and thus it is likely that DEET’s action might be more complex than either paper claims. Still, the idea of identifying a target for chemical intervention by looking at electrophysiological responses to DEET is smart.

In related work, earlier this year a group from Colorado State University, as described in this PNAS overview, “conducted a rigorous search of a library of N-acylpiperidines, using an artificial neural network to identify strong candidates, and then tested them in the laboratory on human volunteers.” They found a candidate molecule that has a ~4X longer repellency effect than DEET. Here’s a photo from the experiments (DEET vs. untreated hand)… ouch!

Lots of flies on the untreated hand!

An apology

It has just been brought to my attention that for the last few months (!) neurodudes has had some serious problems with allowing users to comment, ie. commenting was completely closed. I am very sorry for that. The problem should be fixed and now commenting should again be easy for anyone to use. As always, feel free to contact us at contactus^neurodudes^com (replacing ^ as appropriate) if you have any questions or concerns. – Neville