Photoactivatable transcription: Simplicity vs. overengineering

I finally got around to reading the Nature Methods that has been sitting on my coffee table for a few weeks and I was surprised to see an article on photoactivatable transcription using caged doxycycline with standard Tet On/Off genetics. A postdoc in my lab has been suggesting this type of technology for the last few years and speculating about different ways to possibly implement it. What’s so remarkable about this work is the simplicity of the implementation. In our lab (and others), the common assumption has been that the photoactivatable mechanism should be designed such that a recombinase is directly light-activated. (For example, a membrane tethered Cre recombinase where the tether is broken by light and releases the recombinase to the nucleus after illumination.) But that seems a bit overengineered. Is there a simpler way? Yes!

In this work, Cambridge et al. generated a dox analog, cyanodoxycycline, that is better retained inside cells (reduced membrane permeability) and put it inside a stable photoactivatable (UV) cage. Instead of making the system entirely genetic, they use small molecule uncaging (an established technology) to make problem simpler. In this case, standard Tet genetics can be used (thus leveraging existing model organism Tet lines) and the novel caged Dox can be easily added to food, etc. I think this is a great example of finding the simplest solution to a problem that at first seems very complex.

And the uncaging results are quite impressive. Here are two spatial patterns of gene expression in hippocampal slice culture, a smiley face and a single neuron, achieved by clamping down the field stop before illumination:

Picture 3 Picture 4

Advertisements

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s