Hippocampus may still have a role in recalling old memories

Paraphrasing/adding to the article abstract: prevailing theory suggests that long-term memories are encoded via a two-phase process requiring temporary involvement of the hippocampus followed by permanent storage in the neocortex. However this group found that, even weeks later, after the memories are supposed to be independent of the hippocampus, they could disrupt recall by briefly suppressing hippocampal CA1. The suppression must be brief; if they suppress CA1 for a long time recall works again. This suggests that, long after memory formation, the memory is not primarily stored in the hippocampus, but the hippocampus is still somehow involved in recall. The research also implicates anterior cingulate cortex in recall. Abstract after the break.

Inbal Goshen, Matthew Brodsky, Rohit Prakash, Jenelle Wallace, Viviana Gradinaru, Charu Ramakrishnan, Karl Deisseroth. Dynamics of Retrieval Strategies for Remote Memories. Cell, Volume 147, Issue 3, 28 October 2011, Pages 678-689.

Prevailing theory suggests that long-term memories are encoded via a two-phase process requiring early involvement of the hippocampus followed by the neocortex. Contextual fear memories in rodents rely on the hippocampus immediately following training but are unaffected by hippocampal lesions or pharmacological inhibition weeks later. With fast optogenetic methods, we examine the real-time contribution of hippocampal CA1 excitatory neurons to remote memory and find that contextual fear memory recall, even weeks after training, can be reversibly abolished by temporally precise optogenetic inhibition of CA1. When this inhibition is extended to match the typical time course of pharmacological inhibition, remote hippocampus dependence converts to hippocampus independence, suggesting that long-term memory retrieval normally depends on the hippocampus but can adaptively shift to alternate structures. Further revealing the plasticity of mechanisms required for memory recall, we confirm the remote-timescale importance of the anterior cingulate cortex (ACC) and implicate CA1 in ACC recruitment for remote recall.

Advertisements

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s