Single neurons can distinguish inward temporal sequences from outward

“activating synapses in a centrifugal sequence (outward from the soma) caused a different [lesser] [cortical pyramidal] neuronal response than activating the synapses in a centripetal (inward) sequence”

Alain Destexhe. Dendrites Do It in Sequences (24 September 2010)
Science 329 (5999), 1611.


Tiago Branco, Beverley A. Clark, and Michael Häusser. Dendritic Discrimination of Temporal Input Sequences in Cortical Neurons (24 September 2010)
Science 329 (5999), 1671.

Dendritic organization of sensory input to cortical neurons in vivo

Jia, H., Rochefort, N., Chen, X., & Konnerth, A. (2010). Dendritic organization of sensory input to cortical neurons in vivo Nature, 464 (7293), 1307-1312 DOI: 10.1038/nature08947

Consider a a cortical neuron in V1, layer 2/3, whose output shows sharp orientation tuning. What are the orientation tunings of the most important inputs to that neuron? What is the spatial distribution of these inputs in the neuron’s dendritic tree?

Continue reading

Genetic tagging of the particular neurons in the basolateral amygdala that store a particular engram

When we learn new information we use only a tiny fraction of the neurons in our brain for that particular memory trace. In order to allow the molecular study of those specific neurons we combined elements of the tet system with a promoter that is activated by high level neural activity (the cfos promoter) to generate mice in which a genetic tag can be introduced into neurons that are active at a given point in time. The tag can be maintained for a prolonged period, creating a precise record of the neural activity pattern at a specific point in time. Using fear conditioning we found that the same neurons activated during learning were reactivated when the animal recalled the fearful event. We also found that these neurons were no longer activated following memory extinction, consistent with the idea that extinction modifies a component of the original memory trace.

Continue reading

Crowdsourcing the Brain with the Whole Brain Catalog

A very cool article on a new open source, online system to crowd source the assemblage of data in neuroscience from the Voice of San Diego.  From the article:

Traditionally, the study of the brain was organized somewhat like an archipelago. Neuroscientists would inhabit their own island or peninsula of the brain, and see little reason to venture elsewhere.

Molecular neuroscientists, who study how DNA and RNA function in the brain, didn’t share their work with cognitive specialists who study how psychological and cognitive functions are produced by the brain, for example.

But there has been an awakening to the idea that brains of humans and mammals should be studied like the complex, and interrelated systems that they are. Neuroscientists realized that they had to start collaborating across disciplines and sharing their data if they wanted to make advances in their own field.


Ellisman and his UCSD colleagues have devised a solution: crowdsource a brain. And this week they unveiled their years-long project — the Whole Brain Catalog — at the annual convention of the Society for Neuroscience, the largest gathering of brain experts in the world.

Continue reading

Henry Markram on TED – video online

We had read that Dr. Henry Markram of the Blue Brain project had given a talk at TED (technology, entertainment, design), but the video wasn’t released until this month.  This talk is geared towards a general audience, rather than getting into the specific details of the Blue Brain project, as he has before.  It is engaging and includes many suggestions towards the future of neuroscience and AI.

Watch it online at the TED website.

Frontiers in Neuroscience Journal

The journal, Frontiers in Neuroscience, edited by Idan Segev, has made it Volume 3, issue 1.  Launching last year at the Society for Neuroscience conference, its probably the newest Neuroscience-related journal.

I’m a fan of it because it is an open-access journal featuring a “tiered system” and more.  From their website:

The Frontiers Journal Series is not just another journal. It is a new approach to scientific publishing. As service to scientists, it is driven by researchers for researchers but it also serves the interests of the general public. Frontiers disseminates research in a tiered system that begins with original articles submitted to Specialty Journals. It evaluates research truly democratically and objectively based on the reading activity of the scientific communities and the public. And it drives the most outstanding and relevant research up to the next tier journals, the Field Journals.

Continue reading

Visualizing synaptic tagging and capture

A set of two articles recently came out in Science that directly visualize two different (and likely complementary) approaches to synapse specific delivery of gene products. Plasticity at specific synapses (input specificity — we’re restricting the discussion to the dendrites of the post-synaptic neuron) requires proteins (eg. new AMPA receptors) to get to those post-synaptic compartments and membranes. But the intructions for these new proteins are contained in the nucleus with the rest of the genome. Clearly, new proteins synthesized in the soma can’t just be sent everywhere, since only specific inputs (eg. particular dendritic spines) need these new proteins. How does this happen? Hence, the postulated synaptic tag.

Two approaches

Broadly, there are two approaches to synaptic tagging: 1) mRNA is distributed widely and translated locally at tagged locations; 2) protein products are distributed widely in the bodies of dendrites but only contact/off-load at tagged synaptic specializations. This News & Views gives a nice overview of the two papers, which find approach 1) in Aplysia cultures with sensorin mRNA and approach 2) in rat hippocampal neurons with Vesl-1S/Homer-1a protein. It amazes me that both were found pretty much simultaneously, but that might have more to do with the use of the photoconvertible Dendra2 protein than anything else.

With both approaches, we still don’t know why mRNA/protein is directed to a certain location. That is, we can visualize synaptic tagging but we don’t know what is the tag, its ontogeny, or the mechanism of tagging. But that might not be so important to understanding more about neural function. These new tools might allow us to image plasticity at many synapses at once, perhaps even in vivo. But before that, more work is needed… does the optical signal (from the Dendra fusion protein) correlate with degree of potentiation? Can we detect plasticity in the opposite direction, ie. synaptic depression, through another tag?  (As a sidenote to approach 1), the use of 5′ and 3′ UTRs as a sort of molecular zipcode is also intriguing.)