Memory improvement via stimulation of temporal cortex

Stimulation of temporal cortex with electrodes at memory encoding time boosted recall by 15%, in humans.

In the first phase, researchers listened to brain activity while subjects were memorizing nouns. They trained a model to try to predict, based on the brain activity at encoding time, if that word would be remembered or not. In the second phase, researchers ran the model while subjects were memorizing words, and if the model predicted that the word was more than 50% likely to be forgotten, they zapped the brain for 0.5 seconds (through a single pair of adjacent electrodes in the lateral temporal cortex, at amplitudes ranging from 0.5 mA to 1.5 mA (for electrodes deep in the cortex) or 3.5 mA (for the cortical surface) (amplitude was the maximum within this range such that stimulation didn’t appear to cause afterdischarges). Stimulation in this fashion improved recall by 15%. After stimulation, the classifier was more likely to say that the subject would remember the word, which might suggest that the stimulation improved recall by sometimes nudging the brain into a state that the classifier recognized as good for memory encoding.

As an aside, imo one should keep in mind that this doesn’t necessarily mean that this would be a good thing to do every time you are learning something. The way i like to think about this experiment is to imagine that you have some big machine that you don’t know how it works. The machine sometimes makes humming noises and other times it makes sputtering noises. You notice that when it makes the sputtering noise, this correlates somewhat with it not doing its job so well. So, whenever you hear a sputtering noise, you kick it really hard. Sometimes when you kick it, it makes it hum again. You record data and find out that if you kick it when it sputters, that improves output by 15%. That’s very interesting, but does it mean that it’s a good idea to kick the machine whenever it sputters? No — maybe kicking the machine damages it a little (or has some small probability of damaging it sometimes), or maybe the sputtering was something (such as a self-cleaning cycle) that the machine needs to do for its long-term health even at the cost of short-term performance. In other words, there is a clear gain to kicking the machine when it sputters, but it is unknown if there is also a subtle cost.

 

Youssef Ezzyat, Paul A. Wanda, Deborah F. Levy, Allison Kadel, Ada Aka, Isaac Pedisich, Michael R. Sperling, Ashwini D. Sharan, Bradley C. Lega, Alexis Burks, Robert E. Gross, Cory S. Inman, Barbara C. Jobst, Mark A. Gorenstein, Kathryn A. Davis, Gregory A. Worrell, Michal T. Kucewicz, Joel M. Stein, Richard Gorniak, Sandhitsu R. Das, Daniel S. Rizzuto & Michael J. Kahana. Closed-loop stimulation of temporal cortex rescues functional networks and improves memory.

 

https://www.wired.com/story/ml-brain-boost

Hippocampus may still have a role in recalling old memories

Paraphrasing/adding to the article abstract: prevailing theory suggests that long-term memories are encoded via a two-phase process requiring temporary involvement of the hippocampus followed by permanent storage in the neocortex. However this group found that, even weeks later, after the memories are supposed to be independent of the hippocampus, they could disrupt recall by briefly suppressing hippocampal CA1. The suppression must be brief; if they suppress CA1 for a long time recall works again. This suggests that, long after memory formation, the memory is not primarily stored in the hippocampus, but the hippocampus is still somehow involved in recall. The research also implicates anterior cingulate cortex in recall. Abstract after the break.

Continue reading

Increasing adult hippocampal neurogenesis is sufficient to improve pattern separation.

Sahay A, Scobie KN, Hill AS, O’Carroll CM, Kheirbek MA, Burghardt NS,
Fenton AA, Dranovsky A, Hen R. Increasing adult hippocampal neurogenesis is sufficient to improve
pattern separation. Nature. 2011 Apr 3

http://www.nature.com/nature/journal/vaop/ncurrent/full/nature09817.html

Abstract after the break.

Continue reading

Genetic tagging of the particular neurons in the basolateral amygdala that store a particular engram

When we learn new information we use only a tiny fraction of the neurons in our brain for that particular memory trace. In order to allow the molecular study of those specific neurons we combined elements of the tet system with a promoter that is activated by high level neural activity (the cfos promoter) to generate mice in which a genetic tag can be introduced into neurons that are active at a given point in time. The tag can be maintained for a prolonged period, creating a precise record of the neural activity pattern at a specific point in time. Using fear conditioning we found that the same neurons activated during learning were reactivated when the animal recalled the fearful event. We also found that these neurons were no longer activated following memory extinction, consistent with the idea that extinction modifies a component of the original memory trace.

Continue reading

Frequency of gamma oscillations routes flow of information in the hippocampus

Supplementary Figure 1:  A schematic illustrating the main finding. Slow gamma is maximal on the descending portion of the theta wave, and fast gamma peaks near the trough. Slow gamma serves to synchronize CA1 with inputs arriving from CA3, and fast gamma synchronizes CA1 with MEC input.

Supplementary Figure 1: A schematic illustrating the main finding. Slow gamma is maximal on the descending portion of the theta wave, and fast gamma peaks near the trough. Slow gamma serves to synchronize CA1 with inputs arriving from CA3, and fast gamma synchronizes CA1 with MEC input.

Continue reading

Hippocampal Replay Is Not a Simple Function of Experience

Replay of behavioral sequences in the hippocampus during sharp wave ripple complexes (SWRs) provides a potential mechanism for memory consolidation and the learning of knowledge structures. Current hypotheses imply that replay should straightforwardly reflect recent experience. However, we find these hypotheses to be incompatible with the content of replay on a task with two distinct behavioral sequences (A and B). We observed forward and backward replay of B even when rats had been performing A for >10 min. Furthermore, replay of nonlocal sequence B occurred more often when B was infrequently experienced. Neither forward nor backward sequences preferentially represented highly experienced trajectories within a session. Additionally, we observed the construction of never-experienced novel-path sequences. These observations challenge the idea that sequence activation during SWRs is a simple replay of recent experience. Instead, replay reflected all physically available trajectories within the environment, suggesting a potential role in active learning and maintenance of the cognitive map.

Continue reading

Neuroengineering memory: Something old, something new

Over the last week, it seems like everyone has sent me this NYT piece on PKM-zeta (about work in Todd Sacktor’s lab). I’m not sure why this work is being featured in the Times right now, since it’s a few years old. But it was news to me and I think it is of interest to anyone trying to understand structure-function relationships in the brain. In the original Science paper (from 2007), a pseudosubstrate inhibitor of PKM-zeta caused irreversible loss of a conditioned taste aversion memory (news and views here). I was unfamiliar with PKM-zeta, which appears to be a constitutively active form of PKC-zeta (a kinase that some might be more familiar with) and that lacks the autoinhibitory regulatory domain of PKC. The amazing phenomena is that, after treatment with ZIP (the pseudosubstrate that ties up PKM-zeta), the memory is permanently erased and doesn’t seem to return.

What’s going on? One tantalizing possibility is that the enzyme itself is directly related to the memory trace. This contradicts the (unproven) assumption of modern neuroscience that memories are stored solely in the synaptic strengths (ie. membrane-bound receptors) of a neuron. The other suggestion is that PKM-zeta is actively maintaining synapses and that enzymatic inhibition disrupts the precise maintenance of receptors or synaptic machinery. The effects happen quite fast (within 2 hours after drug injection), which seems short for receptor recycling but perhaps long enough for structural change to occur. I’m no expert on receptor movement: Is 2 hours long enough to add/remove a significant number of receptors?

Fascinating work but the method is blunt, wiping all experimentally-induced memories (and probably others too). Last month, another group reported (also in Science) selective erasure of a fear-conditioned memory using an interesting new genetic tool. Here, neurons in the amgydala that overexpressed CREB were found to be preferentially recruited into a fear memory trace (as shown in a previous Science paper). Incorporation into the memory trace was assayed by expression of the immediate-early gene (ie. activity-dependent) Arc. In the present study, they combine overexpression of CREB in a subset of neurons with cell death (via Diphtheria toxin in a transgenic mouse vulnerable to diphtheria). Apparently, normal mice lack the receptor (here a simian version is used) that confers pathogenicity for diphtheria. Thus, the viral construct both overexpresses CREB in a subset of neurons and selectively makes the same subset vulnerable to diphtheria. Ablation of just these neurons causes a permanent loss of the memory. Subsequent similar learning proceeds just fine (using the remaining neurons).

Can we say that the race is officially on to ablate just the synapses involved in the memory? I think so. Extra points if the ablation is reversible too!

VS Ramachandran's TED Talk

Although I’ve been a longtime fan of Ramachandran’s excellent book Phantoms in the Brain, this TED talk is like a compressed summary of the highlight’s of his research. He’s a great speaker and he covers in 20 minutes my two favorite examples in the book (Capgras delusion and mirror treatment for phantom limb syndrome). Perhaps the best part of the talk is that, after listening to it, I was convinced more than ever before of the statistical nature of sensory perception (ie. the brain attempts to find the most likely explanation for sensory observations) and the integrative nature of central processing of multiple modalities. 

http://video.ted.com/assets/player/swf/EmbedPlayer.swf

Atul Gawande also recently wrote a New Yorker article about treating phantom itch with Ramachandran’s mirror box. I found this part of Gawande’s article on statistical inference in perception most interesting:

You can get a sense of this from brain-anatomy studies. If visual sensations were primarily received rather than constructed by the brain, you’d expect that most of the fibres going to the brain’s primary visual cortex would come from the retina. Instead, scientists have found that only twenty per cent do; eighty per cent come downward from regions of the brain governing functions like memory. Richard Gregory, a prominent British neuropsychologist, estimates that visual perception is more than ninety per cent memory and less than ten per cent sensory nerve signals. When Oaklander theorized that M.’s itch was endogenous, rather than generated by peripheral nerve signals, she was onto something important.

I’m not familiar with this field but I wonder if anyone has tried to quantify what percent of our conscious experience that we normally believe to be 100% due to sensory input is actually recall from memory/inference based on past observation. Also, can this percentage adaptively change? Perhaps there are situations where the brain chooses to rely more heavily on memory and other cases where it relies more on primary sensory input.

Theory rising

Although it’s a few months old, Larry Abbott has an excellent article in Neuron on the recent (last 20 years) contributions of theoretical neuroscience. (He came by MIT last week to give a talk and that’s when I found out about the article.) It’s a review that is not too long and provides a good overview with both sufficient (though not overwhelming) detail and original perspective. It’s rare to find a short piece that is so informative. (And for a more experimentally-oriented review with an eye toward the future, see Rafael Yuste’s take on the grand challenges.)

Click on for some of my favorite passages from the Abbott piece. Continue reading